506 research outputs found

    Characterizing the University of California's tenure-track teaching position from the faculty and administrator perspectives.

    Get PDF
    Teaching faculty are a potential mechanism to generate positive change in undergraduate STEM education. One such type of faculty is the Lecturer with Potential Security of Employment (L(P)SOE), a tenure-track faculty line within the University of California (UC) system. As a foundation for future studies, we sought to characterize individuals in the L(P)SOE position in terms of their background training, job expectations, and resources available for their success. Data were collected through an online survey completed by over 80% of STEM L(P)SOEs across the UC system, as well as interviews with over 20 deans and chairs in STEM departments at three UC campuses. From this work, we found that the majority of current L(P)SOEs were formally trained within their disciplines and not in an education field; however, they possessed substantial education experience, such as classroom teaching or participation in professional development opportunities. Expectations for time spent on teaching, research, and service are aligned between individuals within varying ranks of the L(P)SOE faculty and between L(P)SOEs and administrators. L(P)SOEs and administrators are also in agreement about what constitutes acceptable professional development activities. Interestingly, we identified differences that may reflect changes in the position over time, including increased start-up funds for more recently hired L(P)SOE faculty and a differing perspective on the role of discipline-based education research and scholarly activities between non-tenured and more senior L(P)SOEs. Overall, these data provide a snapshot of the L(P)SOE position that will aid in future work to identify the potential institutional impact of these individuals

    Constructive or Disruptive? How Active Learning Environments Shape Instructional Decision-Making

    Get PDF
    This study examined instructional shifts associated with teaching in environments optimized for active learning, including how faculty made decisions about teaching and their perceptions of how students responded to those changes. The interviews and subsequent analysis reveal a broad range of course changes, from small modifications of existing activities to large shifts towards collaborative learning, many of which emerged during the term rather than being planned in advance. The faculty discuss several factors that influenced their decisions, including prior experience, professional identity, student engagement, and perceived and realized affordances of the environments

    Defining Understanding: Perspectives from Biology Instructors & Biology Education Researchers

    Get PDF
    Promoting student understanding of biological concepts is a key part of biology education, and the ability to “understand” a concept forms one of the six categories of the oft-used Bloom’s Taxonomy. Despite this, there remains no consensus as to what it means to understand a concept. While several formal definitions have been offered, we investigated how biology instructors and biology education researchers define the term and how they perceived the skill sets needed for a student to understand a concept in the context of assessments. We found that there was no agreement on the definition of understanding, and that responses differed in the cognitive level required to reach “understanding” of a concept. We discuss these findings in the context of Bloom’s Taxonomy and variation theory and provide directions for future inquiries. We conclude by discussing implications for biology instructors and the importance of explicitly conveying expectations to better align student and instructor expectations

    Characterizing Biology Education Research: Perspectives from Practitioners and Scholars in the Field

    Get PDF
    Biology education research (BER) is a recently emerging field mainly focused on the learning and teaching of biology in postsecondary education. As BER continues to grow, exploring what goals, questions, and scholarship the field encompasses will provide an opportunity for the community to reflect on what new lines of inquiry could be pursued in the future. There have been top-down approaches at characterizing BER, such as aims and scope provided by professional societies or peer-reviewed journals, and literature analyses with evidence for current and historical research trends. However, there have not been previous attempts with a bottom-up approach at characterizing BER by directly surveying practitioners and scholars in the field. Here, we share survey results that asked participants at the Society for the Advancement of Biology Education Research (SABER) annual meeting what they perceive as current scholarship in BER as well as what areas of inquiry in the field that they would like to see pursued in the future. These survey responses provide us with information directly from BER practitioners and scholars, and we invite colleagues to reflect on how we can collectively and collaboratively continue to promote BER as a field

    Diagonalization of the XXZ Hamiltonian by Vertex Operators

    Full text link
    We diagonalize the anti-ferroelectric XXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of affine U_q( sl(2) ). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit --- the su(2)su(2)-invariant Thirring model.Comment: 65 page

    A Bitter Pill: The Primordial Lithium Problem Worsens

    Full text link
    The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by BBN theory and the WMAP baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2--3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data, particularly the uncertainty on 3He(alpha,gamma)7Be, has reduced to 7.4%, and with a central value shift of ~ +0.04 keV barn. (2) The WMAP 5-year data now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects, and have reaped new lithium isotopic data. With these, we now find that the BBN+WMAP predicts 7Li/H = (5.24+0.71-0.67) 10^{-10}. The Li problem remains and indeed is exacerbated; the discrepancy is now a factor 2.4--4.3 or 4.2sigma (from globular cluster stars) to 5.3sigma (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key nuclear, particle, and astronomical measurements highlighted.Comment: 21 pages, 4 figures. Comments welcom

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene

    The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Get PDF
    We describe the design and data sample from the DEEP2 Galaxy Redshift Survey, the densest and largest precision-redshift survey of galaxies at z ~ 1 completed to date. The survey has conducted a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2 divided into four separate fields, observed to a limiting apparent magnitude of R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately sixty percent of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets which fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high spectral resolution (R~6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. DEEP2 surpasses other deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]Comment: submitted to ApJS; data products available for download at http://deep.berkeley.edu/DR4
    • …
    corecore